119 research outputs found

    Behavioural Effects of Spatially Structured Scoring Systems in Location-Based Serious Games—A Case Study in the Context of OpenStreetMap

    Get PDF
    Location-based games have become popular in recent years, with Pok&eacute mon Go and Ingress being two very prominent examples. Some location-based games, known as Serious Games, go beyond entertainment and serve additional purposes such as data collection. Such games are also found in the OpenStreetMap context and playfully enrich the project&rsquo s geodatabase. Examples include Kort and StreetComplete. This article examines the role of spatially structured scoring systems as a motivational element. It is analysed how spatial structure in scoring systems is correlated with changes observed in the game behaviour. For this purpose, our study included two groups of subjects who played a modified game based on StreetComplete in a real urban environment. One group played the game with a spatially structured scoring system and the other with a spatially random scoring system. We evaluated different indicators and analysed the players&rsquo GPS trajectories. In addition, the players filled out questionnaires to investigate whether they had become aware of the scoring system they were playing. The results obtained show that players who are confronted with a spatially structured scoring system are more likely to be in areas with high scores, have a longer playing time, walk longer distances and are more willing to take detours. Furthermore, discrepancies between the perception of a possible system in the scoring system and corresponding actions were revealed. The results are informative for game design, but also for a better understanding of how players interact with their geographical context during location-based games. Document type: Articl

    Opaque voxel-based tree models for virtual laser scanning in forestry applications

    Get PDF
    Virtual laser scanning (VLS), the simulation of laser scanning in a computer environment, is a useful tool for field campaign planning, acquisition optimisation, and development and sensitivity analyses of algorithms in various disciplines including forestry research. One key to meaningful VLS is a suitable 3D representation of the objects of interest. For VLS of forests, the way trees are constructed influences both the performance and the realism of the simulations. In this contribution, we analyse how well VLS can reproduce scans of individual trees in a forest. Specifically, we examine how different voxel sizes used to create a virtual forest affect point cloud metrics (e.g., height percentiles) and tree metrics (e.g., tree height and crown base height) derived from simulated point clouds. The level of detail in the voxelisation is dependent on the voxel size, which influences the number of voxel cells of the model. A smaller voxel size (i.e., more voxels) increases the computational cost of laser scanning simulations but allows for more detail in the object representation. We present a method that decouples voxel grid resolution from final voxel cube size by scaling voxels to smaller cubes, whose surface area is proportional to estimated normalised local plant area density. Voxel models are created from terrestrial laser scanning point clouds and then virtually scanned in one airborne and one UAV-borne simulation scenario. Using a comprehensive dataset of spatially overlapping terrestrial, UAV-borne and airborne laser scanning field data, we compare metrics derived from simulated point clouds and from real reference point clouds. Compared to voxel cubes of fixed size with the same base grid size, using scaled voxels greatly improves the agreement of simulated and real point cloud metrics and tree metrics. This can be largely attributed to reduced artificial occlusion effects. The scaled voxels better represent gaps in the canopy, allowing for higher and more realistic crown penetration. Similarly high accuracy in the derived metrics can be achieved using regular fixed-sized voxel models with notably finer resolution, e.g., 0.02 m. But this can pose a computational limitation for running simulations over large forest plots due to the ca. 50 times higher number of filled voxels. We conclude that opaque scaled voxel models enable realistic laser scanning simulations in forests and avoid the high computational cost of small fixed-sized voxels

    3D-MAPP: 3D-MicroMapping von großen GeodatensĂ€tzen im Web

    Get PDF
    Die automatische Detektion von Objekten in 3D-Geodaten ist ein wichtiger Bestandteil vieler GIS-Workflows, sei es bei der Kartierung geomorphologischer Formen (Bremer, Sass 2012; Rutzinger et al. 2012) Austrian Alps, using a combination of terrestrial (TLS, der Generierung von 3D-Stadtmodellen (Niemeyer et al. 2012) oder der Entwicklung autonom agierender Fahrzeuge (Maturana, Scherer 2015). Besonders in stĂ€dtischen RĂ€umen, welche durch komplexe Objektstrukturen sowie eine Vielzahl an verschiedenen Objekttypen charakterisiert sind, können automatische Methoden allein jedoch selten zufriedenstellende Ergebnisse liefern. In diesem Beitrag möchten wir daher untersuchen, inwieweit nutzergenerierte Geodaten bzw. sogenanntes „MicroMapping“ Ansatzpunkte fĂŒr die Lösung des beschriebenen Problems sein können. Im Rahmen des 3D-MAPP-Projektes wurden dazu 3D-MicroMapping-Aufgaben mit einer unterschiedlichen KomplexitĂ€t entworfen und in einer Webanwendung implementiert. Die Anwendbarkeit der Methode wurde anschließend in einer empirischen Nutzerstudie untersucht. In der Studie wurden segmentierte LiDAR-Punkwolken genutzt, welche BĂ€ume im stĂ€dtischen Raum abbilden. Die Aufgabe fĂŒr die Teilnehmer der Studie bestand darin, Informationen zur Höhe der Baumkrone, zu fehlenden Teilen der BĂ€ume und zu weiteren in der Punktwolke abgebildeten Objekten zu erfassen

    Volunteered geographic information in natural hazard analysis : a systematic literature review of current approaches with a focus on preparedness and mitigation

    Get PDF
    With the rise of new technologies, citizens can contribute to scientific research via Web 2.0 applications for collecting and distributing geospatial data. Integrating local knowledge, personal experience and up-to-date geoinformation indicates a promising approach for the theoretical framework and the methods of natural hazard analysis. Our systematic literature review aims at identifying current research and directions for future research in terms of Volunteered Geographic Information (VGI) within natural hazard analysis. Focusing on both the preparedness and mitigation phase results in eleven articles from two literature databases. A qualitative analysis for in-depth information extraction reveals auspicious approaches regarding community engagement and data fusion, but also important research gaps. Mainly based in Europe and North America, the analysed studies deal primarily with floods and forest fires, applying geodata collected by trained citizens who are improving their knowledge and making their own interpretations. Yet, there is still a lack of common scientific terms and concepts. Future research can use these findings for the adaptation of scientific models of natural hazard analysis in order to enable the fusion of data from technical sensors and VGI. The development of such general methods shall contribute to establishing the user integration into various contexts, such as natural hazard analysis

    Systematic review of current efforts to quantify the impacts of climate change on undernutrition

    Get PDF
    The World Health Organization and the Intergovernmental Panel for Climate Change propose undernutrition as the most significant impact of climate change on child health. The question then arises: Where does the empirical evidence to back this claim come from? Current evidence for the impacts of climate on childhood undernutrition draws on a limited number of heterogeneous studies with methodological limitations and is based predominantly on secondary data. Establishing and validating causal pathways among complex confounding factors remain the main challenge in quantifying the climate-attributable fraction of undernutrition. Systematically generating evidence from long-term, high-quality primary data on a range of factors (agricultural, environmental, socioeconomic, and health) at the household level is critical for designing adaptation strategies, particularly for subsistence farmers

    Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests

    Get PDF
    Laser scanning from different acquisition platforms enables the collection of 3D point clouds from different perspectives and with varying resolutions. These point clouds allow us to retrieve detailed information on the individual tree and forest structure. We conducted airborne laser scanning (ALS), uncrewed aerial vehicle (UAV)-borne laser scanning (ULS) and terrestrial laser scanning (TLS) in two German mixed forests with species typical of central Europe. We provide the spatially overlapping, georeferenced point clouds for 12 forest plots. As a result of individual tree extraction, we furthermore present a comprehensive database of tree point clouds and corresponding tree metrics. Tree metrics were derived from the point clouds and, for half of the plots, also measured in the field. Our dataset may be used for the creation of 3D tree models for radiative transfer modeling or lidar simulation studies or to fit allometric equations between point cloud metrics and forest inventory variables. It can further serve as a benchmark dataset for different algorithms and machine learning tasks, in particular automated individual tree segmentation, tree species classification or forest inventory metric prediction. The dataset and supplementary metadata are available for download, hosted by the PANGAEA data publisher at https://doi.org/10.1594/PANGAEA.942856 (Weiser et al., 2022a)

    Building extraction from airborne laser scanning data : an analysis of the state of the art

    Get PDF
    This article provides an overview of building extraction approaches applied to Airborne Laser Scanning (ALS) data by examining elements used in original publications, such as data set area, accuracy measures, reference data for accuracy assessment, and the use of auxiliary data. We succinctly analyzed the most cited publication for each year between 1998 and 2014, resulting in 54 ISI-indexed articles and 14 non-ISI indexed publications. Based on this, we position some built-in features of ALS to create a comprehensive picture of the state of the art and the progress through the years. Our analyses revealed trends and remaining challenges that impact the community. The results show remaining deficiencies, such as inconsistent accuracy assessment measures, limitations of independent reference data sources for accuracy assessment, relatively few documented applications of the methods to wide area data sets, and the lack of transferability studies and measures. Finally, we predict some future trends and identify some gaps which existing approaches may not exhaustively cover. Despite these deficiencies, this comprehensive literature analysis demonstrates that ALS data is certainly a valuable source of spatial information for building extraction. When taking into account the short civilian history of ALS one can conclude that ALS has become well established in the scientific community and seems to become indispensable in many application fields.(VLID)174964
    • 

    corecore